مایکروسافت فریمورک متنباز جدیدی با نام Agent Lightning معرفی کرد. این فریمورک به توسعهدهندگان کمک میکند تا عاملهای هوش مصنوعی (AI Agents) را با استفاده از یادگیری تقویتی (Reinforcement Learning) و روشهای خود-بهبود آموزش دهند و بهینه کنند. دسترسی و سازگاری این ابزار تحت مجوز MIT منتشر شده و در اختیار عموم قرار دارد. توسعهدهندگان … ادامه مطلب
- برگه نخست
- نوشته ها
- Agent Lightning؛ فریمورک متنباز جدید مایکروسافت برای RL
Agent Lightning؛ فریمورک متنباز جدید مایکروسافت برای RL
مایکروسافت فریمورک متنباز جدیدی با نام Agent Lightning معرفی کرد. این فریمورک به توسعهدهندگان کمک میکند تا عاملهای هوش مصنوعی (AI Agents) را با استفاده از یادگیری تقویتی (Reinforcement Learning) و روشهای خود-بهبود آموزش دهند و بهینه کنند.
دسترسی و سازگاری
این ابزار تحت مجوز MIT منتشر شده و در اختیار عموم قرار دارد. توسعهدهندگان میتوانند با آن هر نوع ایجنتی را که با چارچوبهایی مانند LangChain، AutoGen یا OpenAI Agent SDK ساختهاند، بدون نیاز به بازنویسی کد آموزش دهند و عملکردش را ارتقا دهند.
هدف طراحی
مایکروسافت در طراحی Agent Lightning تمرکز را بر جداسازی لایهی آموزش از لایهی اجرای ایجنت گذاشت. با این رویکرد، هر عامل فعال میتواند به سامانه متصل شود تا دادههای رفتاریاش ذخیره گردد و همان دادهها برای یادگیری و بهبود تصمیمگیری استفاده شوند.
ساختار سیستم
طبق مستندات رسمی، این فریمورک از دو بخش اصلی تشکیل شده است:
-
Lightning Server – دادههای تعامل را جمعآوری میکند، پاداشها را تخصیص میدهد و فرآیند یادگیری را مدیریت میکند.
-
Lightning Client – عامل هوش مصنوعی را در محیط اجرا میکند و دادههای رفتاری را به سرور میفرستد.
نحوهی کار
Agent Lightning دادههای تعامل را بهصورت مجموعهای از رویدادها (spans) ذخیره میکند. سپس ماژولی به نام Lightning RL این دادهها را به یک مدل تصمیمگیری مارکوف (MDP) تبدیل میکند. در این مدل، حالت (state)، عمل (action) و پاداش (reward) تعریف میشوند تا الگوریتمهای RL بتوانند رفتار عامل را بهینه کنند.
روشهای پشتیبانیشده
مایکروسافت در مقالهی پژوهشی خود اعلام کرد که این چارچوب از چند روش یادگیری پشتیبانی میکند:
-
یادگیری تقویتی کلاسیک برای بهینهسازی سیاستها؛
-
بهینهسازی پرامپتها (Prompt Optimization)؛
-
ریزآموزش (Fine-Tuning) مدلهای زبانی بزرگ؛
-
یادگیری مشارکتی در سامانههای چندعاملی.
ویژگیهای کلیدی
Agent Lightning امکانات زیر را در اختیار توسعهدهندگان قرار میدهد:
-
پشتیبانی از ایجنتهای چندمرحلهای و چندابزاره؛
-
نظارت بر خطاها و اصلاح رفتارهای نامطلوب؛
-
آموزش بدون نیاز به بازنویسی کد؛
-
سازگاری با محیطهای GPU و اجرای توزیعشده؛
-
ثبت خودکار عملکرد و نتایج یادگیری.
نتایج آزمایشی
مایکروسافت اعلام کرد که در آزمایشهای اولیه، این فریمورک در وظایفی مانند تبدیل متن به SQL و مدیریت ابزارهای چندمرحلهای، دقت و پایداری عاملها را بهطور قابل توجهی افزایش داده است.
دسترسی به کد منبع
کد منبع Agent Lightning در GitHub منتشر شده و مستندات رسمی آن در وبسایت Microsoft Research در دسترس عموم قرار دارد.
- مهدی خسروی: تحول نمایشگاههای ایران با هوش مصنوعی؛ از ثبتنام هوشمند تا تجربه دیجیتال
- راهاندازی نخستین اپراتور هوش مصنوعی و داده در کشور تا پایان سال
- رونمایی Ideagen از Mazlan؛ ورود نسل تازه Agentic AI به مدیریت انطباق با قوانین
- OpenAI وضعیت «Code Red» اعلام کرد؛ رقابت شدید با Google Gemini اوج گرفت
- Fujitsu از فناوری نوین پیشبینی رفتار انسان و اشیاء برای ارتقای ایمنی همکاری انسان و ربات رونمایی کرد
- کسب رتبه سوم بریکس توسط تیم دانشگاه تهران با طرح ترکیبی انسان–ماشین در مدلسازی احتراق
- ایران در آستانه جهش دیجیتال؛ عارف: کشور میتواند هاب منطقهای فناوری اطلاعات شود
- آغاز صدور پروانه اپراتور هوش مصنوعی در کشور گام جدید دولت در توسعه اقتصاد دیجیتال
- علیبابا با عینک هوش مصنوعی Quark وارد بازار گجتهای پوشیدنی شد
- هشدار نسبت به عقبماندگی ایران در هوش مصنوعی تأکید بر ضرورت سرمایهگذاری فوری
- برگزاری نخستین نمایشگاه تخصصی هوش مصنوعی ایران در دیماه ۱۴۰۴
- توسعه توپ هوشمند نشتیاب ایرانی با دقت ±۱۰ متر و صرفهجویی ۱۰ میلیون دلاری
- تأخیر یکساله در اجرای قوانین «هوش مصنوعی پرخطر» اتحادیه اروپا
- تحلیل دادههای زیستی و تصاویر پاتولوژی با هوش مصنوعی در دانشگاه تهران
- تقویت همکاریهای منطقهای در فیبر نوری و زیرساختهای هوش مصنوعی در اجلاس باکو
- قانون هوش مصنوعی در مالزی برای استفاده مسئولانه تدوین میشود
- وزارت ارتباطات و فناوری اطلاعات مسئول توسعه زیرساخت هوش مصنوعی
- همکاری بلندمدت Accenture و Anthropic برای تسریع استفاده سازمانی از هوش مصنوعی
- مایکروسافت ویندوز ۱۱ را با جهش بزرگ هوش مصنوعی متحول کرد
- گوگل با الگوریتم Quantum Echoes و تراشه Willow، مرزهای محاسبات کوانتومی را جابهجا کرد
- Kyndryl و HSO همپیمان شدند برای انقلاب AI در سلامت؛ دادهمحورتر کردن مراقبتهای درمانی
- توقف توسعهی هوش مصنوعی فوقهوشمند تا زمان اثبات ایمنی
- هوش مصنوعی در کلاسها و آینده آموزش؛ تمرکز کمیته پارلمانی هند بر سال تحصیلی ۲۰۲۵–۲۰۲۶
- مایکروسافت ابزارهای جدید هوش مصنوعی را برای معلمان و دانشآموزان معرفی کرد
- همکاری آلمان و کرهجنوبی برای تقویت حکمرانی انسانمحور در هوش مصنوعی
- هوش مصنوعی نظامی و خطر اعتماد کورکورانه در تصمیمگیری جنگی
- هوش مصنوعی عاملی و همکاری INBRAIN و مایکروسافت در رابط مغز-کامپیوتر
- آنتروپیک و گوگل در آستانه قرارداد چنددهمیلیارددلاری ابری
- Mixboard؛ ابزار تازه گوگل برای زندهکردن ایدهها
- OpenAI و طرح ۱٫۴ تریلیون دلاری برای زیرساخت هوش مصنوعی
نظر خود را وارد کنید
آدرس ایمیل شما در دسترس عموم قرار نمیگیرد.